Différences entre les versions de « 2024 Workshop on Breton Language Technologies »
Ligne 36 : | Ligne 36 : | ||
: 30 min + 10 min questions | : 30 min + 10 min questions | ||
The first automatic translator for Breton ([[Tyers (2009)|Tyers, 2009]]) and the accompanying parallel corpus will be 15 years old this year. Its modest performance already showed that such a system was possible and could be useful, at least as a partial aid to comprehension for non-speakers. Since then, a few works proposing improvements have been published ([[Sánchez-Cartagena & al. (2015)|Sánchez-Cartagena & al. 2015]], [[Sánchez-Cartagena & al. (2020)|2020]]), but no usable software or resources have been made available. For fifteen years, Breton did not really benefit from the major advances in machine translation. [[Grobol et Jouitteau (2024a)]] then published a new parallel corpus extracted from the ARBRES wikigrammar ([[Jouitteau (2009-)|Jouitteau, 2009-2024]]) and a modern machine translator, with significantly improved performance. Models with undocumented training and opaque resources are obviously off-topic here, as they don't feed into the advances of future models. Breton is also one of the languages announced as qualitatively supported by certain multilingual translators (GPT3.5, Baidu, etc.), but these are mainly just taking advantage of the lack of robust evaluation material for Breton, and the lack of consequent balance of power to impose them ([[Jouitteau & Grobol (2024a)|Jouitteau & Grobol 2024a]]). As it stands, for developers who don't steal their data from the speaking communities, performance remains well below that of translators for well-endowed languages, and Breton parallel corpora remain scattered, poorly documented, and of uncertain quality. | |||
This presentation reports on the current work of Sarah Almeida Barreto's Master II (Sorbonne nouvelle), directed by Loic Grobol (U. Paris Nanterre), in consultation with Mélanie Jouitteau (IKER, CNRS). We present a comprehensive inventory of existing parallel corpora, subjecting them to strict evaluation to build up as complete a corpus as possible, and subjecting it to systematic assessments to ensure its quality. These resources are made available online in downloadable packages, and listed [https://entrelangues.modyco.fr/index.php/Breton#Ressources_num%C3%A9riques on the Entrelangues website] where their metadata can be discussed by speakers. We hope to be able to present the results of a first training in June. This work will enable us all to develop new, higher-quality translation systems, to design evaluation datasets that can be used as standards in the future, and also to clearly identify the resource requirements for translation into and from Breton in order to guide future data collection and curation work. | |||
* [[Grobol & Jouitteau (2024a)|Grobol, Loïc, et Mélanie Jouitteau. 2024a]]. 'ARBRES Kenstur: A Breton-French Parallel Corpus Rooted in Field Linguistics', ''Proceedings of the Fourteenth Language Resources and Evaluation Conference'', European Language Resource Association (ELRA). | * [[Grobol & Jouitteau (2024a)|Grobol, Loïc, et Mélanie Jouitteau. 2024a]]. 'ARBRES Kenstur: A Breton-French Parallel Corpus Rooted in Field Linguistics', ''Proceedings of the Fourteenth Language Resources and Evaluation Conference'', European Language Resource Association (ELRA). |
Version du 18 avril 2024 à 18:45
The CNRS laboratory IKER and the U. Bretagne Ouest UBO are organizing the 2024 Workshop on Breton Language Technologies, which will take place at the University of Quimper (Brittany) on June 8.
Contacts :
- Mélanie Jouitteau: melanie.jouitteau at iker.cnrs.fr
- Milan Rezac: milan.rezac at iker.cnrs.fr
The aim of this workshop is to facilitate a meeting of minds between linguists and developers of technologies for Breton and Brittonic languages. Our objective is to foster a deeper understanding of each other's achievements and to build our collective capacity in this field.
The date has been chosen to fall between the Celtic Student Conference in Brest from May 30 to June 1, and the CRBC Breton Summer School in English beginning on June 10 in Quimper.
It will be possible to follow the event on-line.
We are in the process of putting together a comprehensive program that includes various interventions and thematic sessions.
Confirmed speakers and attendants so far:
- Liana Ermakova (UBO), Loic Grobol (U. Paris Nanterre), Johannes Heinecke (Orange), Mélanie Jouitteau (IKER, CNRS), Gweltaz Duval-Guennoc (indépendant), Alan Entem (indépendant), Tanguy Solliec (LACITO, CNRS)
Syntax, automatized translation and code-switching
Breton annotated corpora, Autogram report
Mélanie Jouitteau (IKER, CNRS), for the ANR funded team Autogramm lead by Sylvain Kahane (Modyco, CNRS, Paris) with, for Breton, Bruno Guillaume (LORIA, INRIA), Kim Gerdes (LISN!, CNRS) et Loic Grobol (Modyco, CNRS et Université Paris Nanterre), and the TAL master projects of Salomé Chandora, Katharine Jiang, Aurélien Said Housseini (2022-2023), Yingzi Liu and Yidi Huang (2023-2024).
- 30 min + 10 min questions
I present a two years project report for Breton treebank II, a collective project aiming at building an annotated Universal Dependencies (UD) corpus (De Marneffe & al. 2021, Nivre & al. 2020), based on data extracted from the ARBRES wikigrammar (Jouitteau 2009-). The work consists in extracting data from the ARBRES wikigrammar, organizing them in the Conll-U format, which is readable for the constitution of the richly annotated corpus, and complete this Conll format by instructing it in dependencies. Coding is operated in SUD format, with automatized translation into the UD format. The extraction is accessible here on github, and the enrichment on Arborator.
The first 2022 extraction, 'Kenstur' had obtained a small aligned corpus that has been used for the development of two separate AI trainings for Breton<->French translations (Grobol 2022-, OPLB & al. 2022). The first feedbacks on trainings suggest that this type of high diversity corpus improves results for training on small resource sets (Grobol & Jouitteau (2024a), Entem p.c.). The 2024 extraction, 'Keneud', is somewhat bigger, organized by dialects, and includes some of the gloses annotations. A parser trained on a corrected version of Tyers & Ravishankar (2018) has pre-annotated the dependencies, with an adaptation for it to assign dominance to the rannig of each sentence in SUD. We add coding of consonantic mutations.
- Grobol, Loïc, et Mélanie Jouitteau. 2024a. 'ARBRES Kenstur: A Breton-French Parallel Corpus Rooted in Field Linguistics', Proceedings of the Fourteenth Language Resources and Evaluation Conference, European Language Resource Association (ELRA).
- Tyers, Francis M. & Vinit Ravishankar. 2018. 'A prototype dependency treebank for Breton', Actes de la conférence Traitement Automatique de la Langue Naturelle, TALN 2018, 197-204. texte. 2023 corrected version on github.
Translation: state of the art and going forward
Loic Grobol Modyco, U. Paris Nanterre, avec Sarah Almeida Barreto U. Sorbonne Nouvelle, Mélanie Jouitteau (IKER, CNRS)
- 30 min + 10 min questions
The first automatic translator for Breton (Tyers, 2009) and the accompanying parallel corpus will be 15 years old this year. Its modest performance already showed that such a system was possible and could be useful, at least as a partial aid to comprehension for non-speakers. Since then, a few works proposing improvements have been published (Sánchez-Cartagena & al. 2015, 2020), but no usable software or resources have been made available. For fifteen years, Breton did not really benefit from the major advances in machine translation. Grobol et Jouitteau (2024a) then published a new parallel corpus extracted from the ARBRES wikigrammar (Jouitteau, 2009-2024) and a modern machine translator, with significantly improved performance. Models with undocumented training and opaque resources are obviously off-topic here, as they don't feed into the advances of future models. Breton is also one of the languages announced as qualitatively supported by certain multilingual translators (GPT3.5, Baidu, etc.), but these are mainly just taking advantage of the lack of robust evaluation material for Breton, and the lack of consequent balance of power to impose them (Jouitteau & Grobol 2024a). As it stands, for developers who don't steal their data from the speaking communities, performance remains well below that of translators for well-endowed languages, and Breton parallel corpora remain scattered, poorly documented, and of uncertain quality.
This presentation reports on the current work of Sarah Almeida Barreto's Master II (Sorbonne nouvelle), directed by Loic Grobol (U. Paris Nanterre), in consultation with Mélanie Jouitteau (IKER, CNRS). We present a comprehensive inventory of existing parallel corpora, subjecting them to strict evaluation to build up as complete a corpus as possible, and subjecting it to systematic assessments to ensure its quality. These resources are made available online in downloadable packages, and listed on the Entrelangues website where their metadata can be discussed by speakers. We hope to be able to present the results of a first training in June. This work will enable us all to develop new, higher-quality translation systems, to design evaluation datasets that can be used as standards in the future, and also to clearly identify the resource requirements for translation into and from Breton in order to guide future data collection and curation work.
- Grobol, Loïc, et Mélanie Jouitteau. 2024a. 'ARBRES Kenstur: A Breton-French Parallel Corpus Rooted in Field Linguistics', Proceedings of the Fourteenth Language Resources and Evaluation Conference, European Language Resource Association (ELRA).
- Jouitteau, Mélanie. 2009–2024. « ARBRES, wikigrammaire des dialectes du breton et centre de ressources pour son étude linguistique formelle ». 2009–2024. http://arbres.iker.cnrs.fr.
- Jouitteau, Mélanie & Loic Grobol. 2024a. 'Petits oublis, grands effets : le silençage des communautés linguistiques minorisées dans le TAL et ses conséquences', Karën Fort, Aurélie Névéol (éds.), Ethics and NLP: 10 years after, Journée d’études ATALA éthique et TAL : 10 ans après, 2024. hal-04533870.
- Sánchez-Cartagena, Víctor M., Mikel L. Forcada, et Felipe Sánchez-Martínez. 2020. « A multi-source approach for Breton–French hybrid machine translation ». In Proceedings of the 22nd Annual Conference of the European Association for Machine Translation, 61‑70. Lisboa, Portugal: European Association for Machine Translation. https://aclanthology.org/2020.eamt-1.8.
- Sánchez-Cartagena, Víctor M., Juan Antonio Pérez-Ortiz, et Felipe Sánchez-Martínez. 2015. « A Generalised Alignment Template Formalism and Its Application to the Inference of Shallow-Transfer Machine Translation Rules from Scarce Bilingual Corpora ». Computer Speech & Language, Hybrid Machine Translation: integration of linguistics and statistics, 32 (1): 46‑90. https://doi.org/10.1016/j.csl.2014.10.003.
- Tyers, Francis. 2010. « Rule-based Breton to French machine translation ». In Proceedings of the 14th Annual Conference of the European Association for Machine Translation. Saint Raphaël, France: European Association for Machine Translation. https://aclanthology.org/2010.eamt-1.13.
- Tyers, Francis M. 2009. « Rule-Based Augmentation of Training Data in Breton-French Statistical Machine Translation ». In Proceedings of the 13th Annual conference of the European Association for Machine Translation. European Association for Machine Translation. https://aclanthology.org/2009.eamt-1.29.
Multilingual Dependency Parsing for Celtic languages and its neighbouring languages
Johannes Heinecke, Orange
- 30 min + 10 min questions
Dependency parsing is a typical NLP task which takes plain sentences as input and generates dependency syntax trees as output. Currently, we deploy dependency parsing in a tool chain for preprocessing customer and employee comments on products and services, in order to classify thematically. POS tagging and dependency parsing is used to identify easily "who did what" and to create nominal groups as keywords (instead of simple words). In the past, handcrafted rules and lexicons where written to make a parser work. Later statistical approaches proved far more efficient, both for transition-based and graph-parsers. Recently, notably since the advent of word-embeddings (like Word2Vec) and later context aware word embeddings such as obtained from language models like BERT, graph-parsers proved to be even better. All statistical based approaches to dependency parsing need, training data. The Universal Dependency (UD) project provides the needed data in form of 150 treebanks in over a hundred languages. Even though some treebanks are very small (as for instance the Breton treebank Breton KEB), others are rich. In case of little or no treebank data, transfer learning on similar languages can be successful, notably with the UD data: UD data has been annotated using a single set of guidelines for all languages. For instance, the set of possible part-of-speech tags, dependency relations or morpho-syntactic features are defined universally. Most treebanks are monolingual, if expression from other languages like film titles or geographic names which can occur in the data are not counted as bi- or multilingual. In the real world, especially for speakers of Celtic languages, code switching is everywhere. We present a multilingual dependency parsing model (graph-parser) which can parse any mixture of Welsh, Irish, Scottish-Gaelic, Manx with English or French without losing much quality with respect to a monolingual model.
Aligned audio corpora and speech to text
tba.
Tanguy Solliec, LACITO CNRS
- 30 min + 10 min questions
Anaouder, Developing ASR tools for Breton
Gweltaz Duval-Guennoc, independent developer
- 30 min + 10 min questions
Automatic Speech Recognition (ASR) systems can be invaluable resources for the Breton community, benefiting both learners and proficient speakers. Technologies like SMS dictation on smartphones or automatic captioning could potentially enhance exposure to the language by incorporating it into everyday handheld devices and equipping content creators with better tools.
Several notable initiatives to develop Speech-To-Text models for Breton have been made (Alan Entem, Holly Montalvo BlueRacoonTech, Xavier Marjou), but we are still far from having dependable and user-friendly software for end-users. One such initiative is Anaouder, which focuses particularly on creating on-device solutions to prioritize user privacy and autonomy.
We have been training models using the Kaldi framework with approximately 60 hours of transcribed audio data. These models are integrated into a Python module that offers command-line tools for real-time and continuous inference from a microphone or audio files, utilizing Vosk as a backend. The code and models are available under a MIT open-source license on GitHub and PyPi.
In addition, we have developed a lightweight rule-based NLP toolkit to streamline textual and audio data processing. This toolkit includes features such as sentence segmentation, pre-tokenization, phonetization, text normalization, and inverse-normalization. Rule-based NLP tasks remain highly relevant for low-resource languages like Breton.
Lastly, we present a desktop application in its early stages of development. This application aims to simplify the creation of transcripts in Breton while still being versatile enough to assist in data alignment and verification for the development of Breton text-audio corpora.
tba.
Preben Vangsberg, PhD. U. Bangor
- 30 min + 10 min questions